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Abstract. One of the early works on the dielectric properties(ε(ω)) of glycerol was by
Davidson and Cole (Davidson D W and Cole R H 1951J. Chem. Phys.19 1484) who proposed
a new relaxation function that is currently used to represent dielectric relaxation behaviour.
Deviations from the expected high-frequency linear behaviour in a complex-plane plot were
interpreted in terms of a second high-frequency relaxation process. Somewhat after the Davidson
and Cole paper, Scaife (Scaife B K P 1963Proc. Phys. Soc.81 124) suggested that instead of
analysing dielectric data in terms of the real and imaginary coordinates of the complex relative
permittivity ε(ω) = ε′(ω) − iε′′(ω) as in the Cole–Cole plot, one should use the real and
imaginary coordinates of the functionρ(ω) = (ε(ω)− 1)/(ε(ω)+ 2), which is proportional to
the complex polarizability of an isolated dielectric sphere.. This suggestion was made because,
in a dielectric sphere, long-range dipole–dipole coupling vanishes and because a better weighting
is given to individual relaxation processes. In thisρ(ω) representation, the deviations observed
at high frequencies disappear and there is no longer any need to postulate a high-frequency
relaxation process. The recommendations by Scaife have been largely ignored and these high-
frequency deviations continue to receive considerable attention from many investigators. It is
the object of this work to apply the recommendations of Scaife to current dielectric relaxation
data for glycerol which now span a much broader and higher frequency range, i.e. 10−2 to
109 Hz. The deviations are no longer present when his recommendations are followed. It is
expected that these observation will have important consequences for current theoretical models
for dielectric relaxation.

1. Introduction

A literature search by the authors on the molecular or relaxation dynamics of glycerol
found at least 90 citations since 1977. Prior to 1977 a literature search is more difficult
to conduct but that time period also contains some very important papers on glycerol.
Glycerol has been an object of study for a long time for at least two reasons. First,
the molecule has three hydroxyl groups and this enables the system to form an extensive
network through hydrogen bonding. Second, measurements can be made well below its
freezing point because the material supercools. Of the various early papers on glycerol,
one significant one is by Davidson and Cole [1] who reported a new relaxation function for
representing dielectric relaxation data. They reported deviations from this assumed (linear)
high-frequency behaviour in the complex plane and interpreted them in terms of a second
high-frequency dispersion.

Another important early paper was by Scaife [2] who questioned the utility of analysing
dielectric relaxation data solely in terms of the complex permittivity (ε(ω)). His arguments,
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Figure 1. The high-frequency region of the complex-plane plot for glycerolε(ω) data at 203 K.
The key identifies the experimental and expectation values and their difference, i.e. the residual.
3.8 was added to the real residual as an estimate of the high-frequency limit of the alpha process.

based on the relative weighting of various regions of the dielectric process, led him to
suggest that it is the complex polarizability,ρ(ω), that should be used for analysing
dielectric relaxation data. The quantityρ(ω) is proportional to the complex polarizability
of a dielectric sphere suspended in a vacuum to which an electric field is applied and is
related toε(ω) by means of equation (1):

ρ(ω) = ε(ω)− 1

ε(ω)+ 2
. (1)

In this expression,ε(ω) is the complex permittivity measured at the angular frequency
ω = 2πf wheref is in Hz. The real part of this expression is denoted byε′(ω) while
the imaginary part is denoted byε′′(ω). These parts are related to the complex dielectric
constant through the expressionε(ω) = ε′(ω)− iε′′(ω) where i is

√−1. Similar definitions
exist for ρ(ω). According to Scaife, when the dielectric dispersion data for glycerol are
analysed in terms ofρ(ω), these high-frequency deviations in the complex plane are no
longer present. In other words the existence of a high-frequency dispersion depends on
the method of data representation, and hence its reality is suspect. Scaife’s suggestion is
important because glycerol is receiving considerable attention and these deviations continue
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Figure 2. A plot of r(ω) and r ′′(ω) defined by equations (3) and (4) as functions of
log(frequency) for the various methods of data representation defined in the text for glycerol at
203 K.

to be observed and interpreted [3] in terms of a high-frequency relaxation process. The
object of this work is to examine dielectric relaxation data for glycerol in the manner
of Scaife, but using data which now cover a frequency range that extends three decades
higher—that is, to 109 instead of 106 Hz.

2. Experimental data

The dielectric measurements used in this work were supplied to the authors by
NOVOCONTROL [4]. The measurements were made over a frequency range of 10−2

to 1.8× 109 Hz and a temperature range of 193.2 to 333.2 K in 10 K increments. The
temperature control is stated to be within 0.5◦C with a cycle time of about five minutes.
The measuring equipment and cells are changed at a frequency of 1 MHz. Close inspection
of the data in the vicinity of the changeover frequency, which is necessary for this study,
reveals a small discontinuity. Discussions with NOVOCONTROL personnel revealed that
this discontinuity is due to small percentage errors in the determination of the cell constant.
In addition there are some stray corrections and lead corrections. Prior to the adjustments,
there was a discontinuity of about 0.02 loss units and 0.04 real units at 1 MHz. Eliminating
the discontinuity, by adjusting the cell constant accordingly, has mostly a cosmetic effect,
because making the corrections in the analysis of the data has only a small effect on the
parameters and no effect on the conclusions. We present here the results obtained using
data that were corrected. The data at each temperature were fitted to a relaxation [5, 6]
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Figure 3. A plot of the parameterα against temperature for the various methods of representing
the dielectric relaxation data for glycerol defined in the key. The upper and lower limits are the
estimated values forα ± 1.5σ , whereσ is the parameter confidence interval. ‘HIGH FREQ.’
refers to the parameterα for the high-frequency process shown in figure 1.

function defined as

ε(ω)− ε∞
ε0− ε∞ = {1+ (iωτ0)

α}−β . (2)

It is relatively straightforward [5, 6] to show thatε0 is the static or equilibrium permittivity,
ε∞ is the instantaneous permittivity andτ0 is the relaxation time. Often, the relaxation
frequency is used and is defined asf0 = 1/τ0. The parameterα represents the width and
β represents the skewness of the relaxation process. The Davidson and Cole expression
is obtained whenα is set to unity in equation (2). There are two interesting analytical
features of equation (2). The first is that in a complex-plane plot the limiting high-frequency
behaviour is a straight line. The second is that both the low- and high-frequency limiting
slopes of a log(loss) versus log(frequency) plot are linear. The low-frequency slope is equal
to α while the high-frequency slope is equal to−αβ for these log(loss) versus log(frequency)
plots.

Estimation of the five parameters of equation (2) using non-linear regression techniques
has been fully discussed [7–10]. These methods can also be used to estimate parameter
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Figure 4. A plot of the parameterβ against temperature for the various methods of representing
the dielectric relaxation data for glycerol defined in the key. The upper and lower limits as well
as ‘HIGH FREQUENCY’ are defined in the caption of figure 3.

confidence intervals(σ ) so comparisons with the parameters from NOVOCONTROL or
other studies can be made on a sound statistical basis. Transformation ofε(ω) data to
ρ(ω) data exaggerates experimental errors, and the confidence intervals may appear to be
unduly large. Briefly, the major sources of high model standard errors in the estimates and
consequently also the parameters and their confidence intervals are the temperature cycling
and its effect on the relaxation time; see section 3 in reference [9].

3. Results and discussion

3.1. Dielectric permittivity and high-frequency relaxation

Davidson and Cole (see figure 5 in reference [1]) gave a complex-plane plot ofε′(ω)
for glycerol at 203 K to illustrate the high-frequency deviations from the predicted linear
behaviour in a complex-plane plot. The measurements by Davidson and Cole were only
made up to 5 MHz. Shown in figure 1 of this work is a similar plot for the same temperature
(203 K) but using data up to 1 GHz. Except for the change of notation given below, the
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Figure 5. A plot of the parameter ln(f0) against temperature for the various methods of
representing the dielectric relaxation data for glycerol defined in the key. The upper and lower
limits are defined in the caption of figure 3.

resulting behaviour is the same as that noted by Davidson and Cole. The loss for the four
highest-frequency points is negative; we assume this to be due to experimental error and
these data will be deleted from all further consideration.

We define real,r ′(ω), and loss,r ′′(ω), percentage residuals as

r ′(ω) = 100× ε
′(ω)− ε′e(ω)
ε′(ω)

(3)

with a similar expression forε′′(ω), namely

r ′′(ω) = 100× ε
′′(ω)− ε′′e (ω)
ε′′(ω)

. (4)

In these expressions the subscripte represents the expectation values determined from
equation (2). Plots of the real and loss percentage residuals as functions of log(frequency)
are given in figure 2. They are identified as the real permittivity residual and the loss
permittivity residual in the key. There are significant deviations in the percentage residuals
at frequencies above 104 Hz. A complex-plane plot of the residuals after 3.8 has been
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Figure 6. The high-frequency region of the complex-plane plot for glycerolρ(ω) data at 203 K.
The key identifies the sources of the data.

added to the real residual is given in figure 1. The line represents the results of fitting the
residuals to equation (2).

This method of analysis was extended toε(ω) data for all the available temperatures.
The results for the parameterα at different temperatures are given in figure 3. In this figure
the NOVOCONTROL parameters are represented by the filled circles. The dotted lines
represent±1.5σ determined by the methods discussed in references [6–9]. The parameter
α for the high-frequency process is represented by the unfilled circles (there are three).
The high-temperature data poorly define the high-frequency side of the relaxation process.
Under these conditions the high-temperature data could only be regressed when we greatly
relaxed our convergence criterion. For this reason the parameters at the highest temperatures
are not reported. Also, as is apparent from figure 3, the confidence intervals increase with
temperature forε(ω) parameters. This is because as the temperature increases the relaxation
process shifts to higher frequency and the available frequency range does not completely
define the relaxation process. The results for the parameterβ are given in figure 4. The
symbols in this figure have the same meaning as they do forα in figure 3. The important
observation in figures 3 and 4 is that the parametersα, β for the high-frequency process
can be represented by equation (2) and not one of its limiting forms; that is,α, β 6= 1. The
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Figure 7. A plot of ρ∞ against temperature derived from the various methods of representing
the dielectric relaxation data for glycerol. The upper and lower limits represent±1.5σ for
ρ∞ estimated fromρ(ω) data. Quantities labelled as coming from references [9, 10] or
NOVOCONTROL signify values ofρ∞ calculated fromε∞. In each case,ε∞ was first
determined fromε(ω) data and then equation (6) was used to calculateρ∞. The two solid
lines and the solid circle on a broken line representρ∞ estimated from equation (5) using
different vales for the refractive index as described in the text.

results for the temperature dependence of lnf0 are given in figure 5. The lines and symbols
have the same significance as they do in the previous figures. lnf0 for the high-frequency
process appears to parallel that for the low-frequency process.

3.2. Complex polarizability

The complex polarizability is calculated fromε(ω) using equation (1). A complex-plane plot
of the polarizability for the same temperature and frequency ranges as are shown in figure 1
is given in figure 6. These results show that there may be systematic deviations between
the experimental and fitted values in this frequency range; they are much smaller and of a
different type. What is important to note is that the experimental high-frequency complex-
plane plot is linear. The results obtained forr ′(ω) and r ′′(ω) using the experimental and
fitted values ofρ(ω) are given in figure 2 and labelled as real or loss polarizability residuals.
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Figure 8. A complex-plane plot ofρ(ω) for glycerol at 233 K. The low-frequency dispersion
observed in this figure is the ‘dc tail’ often observed in complex-plane plots ofε(ω) data where
the conductivity is significant.

The quantitiesr ′(ω) and r ′′(ω) calculated from the fitted values ofρ(ω) and the inverse
of equation (1) are also plotted in figure 2. The loss residual for theρ(ω) representation
has been reduced by a factor of 2.5 while the real residual has been reduced by an order
of magnitude so that it is now similar at low and high frequencies. These residuals could
not be analysed in terms of a high-frequency relaxation process as was done for theε(ω)

data.
A plot, for the ρ(ω) data, ofα against temperature is given in figure 3, ofβ against

temperature in figure 4, of lnf0 against temperature in figure 5, and ofρ∞ against
temperature in figure 7. The equilibrium parameter,ρ0, is well behaved and need not
concern us here. In addition, the values ofρ∞ calculated from the Havriliak–Negami
parameters for theε(ω) data are included.

A complex-plane plot ofρ(ω) data at 233 K is given in figure 8. The low-frequency
dispersion is due to the dc tail observed inε(ω) plots. The temperature dependence of
the relaxation time is given in figure 5.α = β = 1 ± 0.02 while 1ρ = ρl − ρh ≈
0.05± 0.0001, where the subscripts refer to the high- and low-frequency limits of the
relaxation process.

3.3. The temperature dependence ofρ∞

The temperature dependence ofρ∞ calculated fromε∞ is anomalous. We can estimate the
temperature dependence ofρ∞ from the Clausius–Mossotti [11] equation, i.e.

n2− 1

n2+ 2

M

d
= 4πN

3
α0 = ε∞ − 1

ε∞ + 2

M

d
(5)
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Figure 9. A plot of log(loss permittivity residual) versus log(frequency) for the temperatures
(in K) listed in the key.

wheren2 is the square of the refractive index at very low (optical) frequencies,M is the
molecular weight,d is density andα0 the polarizability of the molecule. The temperature
dependence ofn is due to the temperature dependence ofd since all of the other quantities in
equation (5) are independent of temperature. The assumption is made that at very low optical
frequencies,n2→ ε∞ at very high frequencies. What is needed to solve this problem is an
estimate of the refractive index and some allowance for the atomic polarizability, normally
taken to be about 15% onn, and the temperature dependence of the density. We take
the refractive index of glycerol to ben(20 ◦C) = 1.476 [12] and allow 15% for atomic
polarizability. We calculate the density dependence in the following way. We assume that
glycerol can be treated as a polymer with the repeating unit(HCOH)3 and use the method
described by Van Krevelen and Hoftyzer [13]. The Van der Waals volumeVw is calculated
to be 54 cm3. The results of the calculation are given in figure 7. Cartwright and Errera
[14] reported the refractive index in the far-infrared, i.e. in the range 50 to 150µm, to be
3.5 at room temperature. The results of using this value forn in equation (5) are given in
figure 7. The instantaneous parameter calculated from the regression ofε∗(ω) data shows
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Figure 10. A plot of log(ε′′(ω)) versus log(frequency) for glycerol at 203 K. The experimental
data as well as the quantities calculated from equations (2) and (6) are identified in the key. The
straight dotted lines are drawn in accordance with the method of Lunkenheimeret al [3].

an anomalous temperature dependence. This comes about because of the deviations at high
frequencies. As the temperature is increased, the data shift to the low-frequency portion of
the process and away from the high-frequency deviations.

3.4. Plots of log(loss) versus log(frequency)

Recently, dielectric relaxation data have been represented as log(loss) versus log(frequency)
plots because the loss can be measured over several decades with nearly the same
experimental error, i.e. percentage experimental error. In plots of log(ρ ′′(ω)) versus
log(f ), small deviations are observed at high frequencies. A plot of the residuals,
i.e. log(experimental expectation) against log(frequency), is given in figure 9. In these
plots a loss maximum is well defined, rather than there being an increasing systematic
deviation from high-frequency linear behaviour, as was observed by Lunkenheimeret al
[3]. The loss maximum also decreases rapidly with temperature. Furthermore, the loss
maximum frequency appears to be independent of temperature. Analysis of the linear loss
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residuals and the imaginary part of equation (2) yields1ρ = 0.004 42± 0.000 08 and
α ' β = 0.95± 0.05 for T = 193 K. Although an interpretation of this loss peak is
uncertain, it is not similar to those reported by Lunkenheimeret al.

We can calculateε(ω) from equation (2), and the parameters used to represent the
experimentalρ(ω) data and the inverse of equation (1), i.e. equation (6):

ε(ω) = 2ρ(ω)+ 1

1− ρ(ω) . (6)

The results of this calculation are given in figure 10. In order to understand this behaviour
it is important to recognize that as reported by Scaife [2] the transformation ofε(ω) to
ρ(ω) data or the inverse is a bilinear transformation. This means that a straight line in one
representation may be a curve in the other representation. Inspection of the calculated values
of ε(ω) in figure 10 shows that there are two approximately linear regions represented by
dotted lines in that figure.

4. Conclusions

Deviations from linear high-frequency behaviour for glycerol either in a complex-plane plot
or in a log(ε′′(ω)) versus log(frequency) plot have received considerable attention. None of
the discussions included Scaife’s suggestion. When Scaife’s suggestion is followed, these
high-frequency deviations disappear. The questions that we are confronted with are listed
below.

(1) What is the significance of a relaxation process that depends on the method of data
representation?

(2) What do these observations mean in terms of dielectric theories that conclude that
molecular and macroscopic relaxation times are similar?

The answer to the first question is simple: the significance of the high-frequency
relaxation process is nil. The second question is of considerable theoretical importance
for polar liquid theory, because it implies that conclusions based on Glarum’s [15] or
Cole’s [16] correlation function theories are incorrect, while Scaife’s views are correct.
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